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Abstract 
 
An optimal trajectory design of a module for the planetary landing problem is achieved by minimizing the control ef-

fort expenditure. Using the calculus of variations theorem, the control variable is expressed as a function of costate 
variables, and the problem is converted into a two-point boundary-value problem. To solve this problem, the perform-
ance measure is approximated by employing a trigonometric series and subsequently, the optimal control and state 
trajectories are determined. To validate the accuracy of the proposed solution, a numerical method of the steepest de-
scent is utilized. The main objective of this paper is to present a novel analytic guidance law of the planetary landing 
mission by optimizing the control effort expenditure. Finally, an example of a lunar landing mission is demonstrated to 
examine the results of this solution in practical situations.  
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1. Introduction 

Researchers and engineers have not been as suc-
cessful in dealing with nonlinear optimal control 
problems as they have been in solving linear optimi-
zation problems in control. In general, the optimal 
formulations of nonlinear dynamic systems, either 
through dynamic programming or through a varia-
tional approach, lead to nonlinear partial differential 
equations. The numerical solution of these equations 
when dealing with complex nonlinear systems is al-
ways difficult, particularly for real-world physical 
problems. One optimal control solution of the nonlin-
ear lunar landing mission is obtained either by a dy-
namic programming approach or through its varia-
tional formulation [1, 2]. Useful mathematical meth-
ods specially for approximating the mathematical 
functions are presented in [3]. To create a closed-loop 

guidance policy of the satellite injection problem, 
Pourtakdoust and Novinzadeh presented a fuzzy algo-
rithm that was augmented to the solution of the time-
optimal guidance strategy [4]. Afshari et al. presented 
some analytic approaches in spacecraft guidance [5-7]. 
An optimal guidance law that minimized the com-
manded acceleration in three dimensions was ob-
tained by Souza [8]. Ramana has designed an optimal 
trajectory for soft landing on the moon by solving the 
boundary value equations through a numerical ap-
proach named controlled random search [9]. Lee in-
vestigated on the optimal trajectory and the feedback 
linearization control of a re-entry vehicle during the 
terminal-area energy management (TAEM) phase 
[10]. Employing the nonlinear function approach, an 
improved model-based predictive control of vehicle 
trajectory has been developed [11]. This paper fo-
cuses on a novel solution to design the optimal con-
trol for the nonlinear problem of planetary landing 
mission by optimizing the control effort expenditure. 
To obtain an analytical solution, a set of state-
dependent nondimensional variables is introduced. 
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Then, by using the calculus of variations theory and 
applying a trigonometric approximation, the perform-
ance measure is expressed with respect to the control 
variable. Transferring the state equations to the new 
system with respect to the control variable allows for 
analytically deriving the optimal control and optimal 
state trajectories through optimality relations and 
some boundary conditions. 

 
2. Analytical solution for the nonlinear prob-

lem of the planetary landing mission 

Consider an ideal point-mass module at the orbital 
of inertial frame ( , )x y  at 0t = , which moves under 
the action of a constant propulsive force that makes a 
control angle ( )tβ  with the horizon. Obviously, the 
position and velocity vector of the vehicle will change 
due to the action of forces upon it. The problem is to 
determine the optimal control strategy of this system 
for landing from a planet orbital by minimizing the 
control effort expenditure. Based on Fig. 1, the gov-
erning state-space equations are 
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with the following appropriate boundary conditions: 

 
0( 0) , ( 0) 0, ( 0) ,u t u v t y t h= = = = = =  (2) 

( ) 0, ( ) 0, ( ) 0.f f fu t t v t t y t t= = = = = =  (3) 

 
For better physical understanding and for reaching 

an analytical explicit solution, the governing equa-
tions and the associated boundary conditions are non-
dimensionalized by using the following set of as-
sumed reference parameters ( *, *, *)u v y : 
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whereas the reference parameters are  

 
0 0* , * , * / .u u y h t h u= = =  (5) 

 
Using the aforementioned nondimensional state vari-
able Eq. (4), the transformed equations become 

 
 
Fig. 1. Geometry of the planetary landing mission. 
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where 
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with the following nondimensional boundary condi-
tions: 

 
( 0) 1, ( 0) 0, ( 0) 1,u v yτ τ τ= = = = = =  (8) 
( ) 0, ( ) 0, ( ) 0.f f fu v yτ τ τ τ τ τ= = = = = =  (9) 

 
The problem is to determine the control action of 

( )tβ β= , which is required to minimize the control 
effort expenditure; thus, the performance measure is 
defined as 

 
2

0

fJ d
τ
β τ= ∫ , (10) 

 
and the corresponding Hamiltonian is 
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Using the costate equations, the following relations 
are derived: 
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where 1k , 2k , and 3k  are constant parameters that 
should be determined. Note that the time derivatives 
in Eq. (6) can be written with respect to β . This way, 
β  now becomes an independent variable. In addition, 
the boundary conditions should be expressed with 
respect to β . Due to the simpler form of the new 
state equations, it is integrated to yield the result as a 
function of the control variable β . This way, to keep 
some unsolvable integrals from appearing due to the 
use of the performance measure, a trigonometric se-
ries is applied to approximate the term 2β . This 
series is given by Dwight in [3] in the following form: 
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The comparison between the real curve and its ap-

proximation when 6r =  is depicted in Fig. 2. Using 
this approximation, the costate equations remain in 
the previous formulation, but the optimality relation is 
varied. Now, the new Hamiltonian function is defined 
as 
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Using the optimality relation, the optimal thrust angle 
can be derived as 
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Fig. 2. Comparison of the performance measure with the 
produced approximation profile. 

To derive an explicit formulation that can relate the 
thrust angle β  to time τ , it will be necessary to 
divide Eq. (15) with respect to cosβ  as follows:  
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By differentiating from Eq. (16) and considering Eq. 
(12), the required explicit relation ( / )d dtβ  is ob-
tained in the following formulation: 
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To complete the analytic solution, the time-

derivative equations in the state-space equations must 
be written with respect to β  as follows: 
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With regard to the term ( , )Sries rβ , which is a func-
tion of β , and uλ  and yλ , which are two constant 
parameter yields, it is possible to integrate Eqs. (18)-
(20) while applying the following nondimensional 
initial conditions to the problem: 

 
0 0 0( ) 1, ( ) 0, ( ) 1u v yβ β β= = = . (21) 

 
Obviously, for explicit results, it is necessary to spec-
ify the magnitude of the six unknown parameters that 
appeared in the solution process, that is, 

1 2 3 0,  ,  ,  ,  ,  f fk k k β β τ . Certainly, it can be accom-
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plished by considering the five boundary relations 
illustrated from the geometry of problem and by using 
another relation derived from the orthogonality condi-
tion. These relations yield to six nonlinear algebraic 
equations abbreviated as follows:   

 

0 0

( ) 0, ( ) 0, ( ) 0,

( ) , ( ) , ( ) 0
f f f

f f f

u v y

H

β β β

β τ β β τ β τ

= = =

= = =
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Given 6r = , it is possible to find these parameters to 
approximate the performance measure and solve the 
aforementioned nonlinear algebraic equations. For a 
set of assumed values of the parameters 0,  ,  ,  u h a g , 
the six unknown parameters are computed from the 
equations in (22). For example, in the case of a lunar 
landing mission, if 0 1u h a= = =  and 1/ 3g = , the 
six unknown parameters are computed by solving the 
algebraic equations as 

 
0

1 2 3

2.2189, 1.2125 rad, 1.3396 rad,

1.9380, 1.6928, 2.3383.
f f

k k k

τ β β= = − =

= − = =
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3. Results and discussion 

By substituting the obtained parameters of Eq. (23) 
in Eq. (15), the optimal thrust angle history is deter-
mined as shown in Fig. 3. In addition, considering 
that the solution parameters , ,u v y , and x  have 
been expressed in the terms of β  and β  is related 
to τ , the solution parameters can be expressed with 
respect to τ . The time histories of the optimal state 
variables are depicted in Figs. 4-7. To examine the 
accuracy of the analytical results, a numerical method 
such as the steepest descent should be utilized, which 
is an iterative numerical method for solving the 
nonlinear two-point boundary-value problems. In this 
method, an initial guess is used to obtain the solution 
to a problem in which one or more of the optimality 
necessary conditions are not satisfied. This solution is 
then used to adjust the initial guess in an attempt to 
make the next solution come “closer” to satisfying all 
of the necessary conditions. If the steps are repeated 
and the iterative procedure converges, the optimality 
necessary conditions will eventually be satisfied [2]. 
After comparing the analytical and numerical results, 
the good agreements between these two different ap-
proaches are concluded. Presenting a novel analytical  

 
 
Fig. 3. Time history of the optimal control by minimizing the 
control effort expenditure. 

 
solution that allows some related studies such as hard-
ware-in-the loop analysis to be performed with high 
reliability is the main advantage of this work. Ramana 
proposed a numerical technique of a controlled ran-
dom search to solve a similar problem [9], but this 
numerical method may encounter some practical 
problems. In another study [8], to minimize the con-
trol effort expenditure, the commanded acceleration is 
introduced as the performance measure. However, 
according to the optimal control theory [1] and as 
calculated in this paper, the best measure for minimiz-
ing the control effort is 
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To demonstrate some practical applications of this 
solution in real-world situations, the results of several 
lunar landing missions with different initial condi-
tions are presented in Tables 1 and 2. By comparing 
the data in these tables, it can be illustrated that by 
decreasing the initial altitude of the module, its con-
trol effort expenditure is reduced. However, by de-
creasing the initial value of the horizontal velocity 
component, this expenditure is increased. Further-
more, the optimal profiles of the state trajectories are 
depicted in Figs. 4-6. The profile of the module’s 
downrange, as presented in Fig. 7, can be computed 
by integrating the horizontal velocity component with 
respect to the thrust angle. 
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Table 1. Results of some lunar landing missions with differ-
ent initial altitudes. 
 

(h,U0) (1,1) (0.75,1) (0.5,1) 

τf 2.2189 1.9534 1.6531 

β0 -1.2125 -1.1506 -1.0309 

βf 1.3396 1.3067 1.2447 

expenditure 1.3956 1.2515 1.0080 

 
Table 2. Results of some lunar landing missions with differ-
ent initial velocities. 
 

(h,U0) (1,1) (1,0.75) (1, 0.5) 

τf 2.2189 2.1773 2.1549 

β0 -1.2125 -1.2940 -1.3589 

βf 1.3396 1.3877 1.4306 

expenditure 1.3956 1.6128 1.8121 

 

 
 
Fig. 4. Optimal trajectory of the module’s horizontal velocity 
component. 

 

 
 
Fig. 5. Optimal trajectory of the module’s vertical velocity 
component. 

 
 
Fig. 6. Optimal trajectory of the module’s altitude. 
 

 
 
Fig. 7. Optimal trajectory of the module’s downrange. 

 
4. Conclusion 

An analytical optimal control law required to influ-
ence the nonlinear problem of soft planetary landing 
mission is achieved by minimizing the control effort 
expenditure. Using an analytical solution procedure to 
the variational formulation yielded to the derivation 
of the optimal state trajectories, which can appropri-
ately satisfy all boundary constraints. Consequently, 
in the proposed methodology, several difficulties 
associated with the numerical determination of the 
optimal control solution for nonlinear systems, such 
as a slow convergence rate, an unexpected singularity, 
and a high sensitivity to initial guesstimates are not 
observed. A conventional numerical method for solv-
ing the nonlinear optimal control problem, which is 
called the steepest descent utilized to validate the 
analytical solution. The results show that there are 
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good agreements between the numerical and analyti-
cal results. The other advantage of this law, with re-
spect to the previous ones, is that it is simple, easily 
mechanized, and can operate online in real-world 
spacecraft applications. By investigating the results 
obtained for different initial conditions, it can be con-
cluded that by decreasing the landing initial altitude, 
the control effort expenditure is reduced. On the con-
trary, by decreasing the initial value of the horizontal 
velocity component, this expenditure is considerably 
increased. 

 

Nomenclature----------------------------------------------------------- 

a  : Spacecraft acceleration 
g  : Moon gravitational constant 
h  : Height of moon orbital 
u  : Velocity horizontal component 

* * *, ,u y t  : Reference parameters 
, ,u v y   : Nondimensional state variables   

v  : Velocity vertical component  
iw  : Non-dimensional parameters  
( )x t  : Spacecraft downrange  
( )y t  : Spacecraft altitude  
iK  : Unknown constant parameters 

H  : Hamiltonian function 
J  : Performance measure 
T  : Thrust force  
β  : Thrust angle 

iλ  : Costate multiplier of optimality 
τ  : Nondimensional time 
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